敬鹏电子

十种常用PCB失效分析技术

PCB其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。但是由于成本以及技术的原因,线路板厂在生产和应用过程中会出现PCB失效问题。

对于这种失效问题,我们需要用到一些常用的失效分析技术,来使得PCB在制造的时候质量和可靠性水平得到一定的保证,本文总结了十大失效分析技术,供参考借鉴。

FQC

1. 外观检查

外观检查就是目测或利用一些简单仪器检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB的失效模式。

2. X射线透视检查

对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X射线透视系统来检查。X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。

3. 切片分析

切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB横截面结构的过程。通过切片分析可以得到反映PCB(通孔、镀层等)质量的微观结构的丰富信息,为下一步的质量改进提供很好的依据。

4. 扫描声学显微镜

目前用于电子封装或组装分析的主要是C模式的超声扫描声学显微镜,它是利用高频超声波在材料不连续界面上反射产生的振幅及位相与极性变化来成像,其扫描方式是沿着Z轴扫描X-Y平面的信息。

5. 显微红外分析

显微红外分析就是将红外光谱与显微镜结合在一起的分析方法,它利用不同材料(主要是有机物)对红外光谱不同吸收的原理,分析材料的化合物成分,再结合显微镜可使可见光与红外光同光路,只要在可见的视场下,就可以寻找要分析微量的有机污染物。

6. 扫描电子显微镜分析

扫描电子显微镜(SEM)是进行失效分析的一种最有用的大型电子显微成像系统,在PCB或焊点的失效分析方面,SEM主要用来作失效机理的分析,具体说来就是用来观察焊盘表面的形貌结构、焊点金相组织、测量金属间化物、可焊性镀层分析以及做锡须分析测量等。

7. X射线能谱分析

上面所说的扫描电镜一般都配有X射线能谱仪。当高能的电子束撞击样品表面时,表面物质的原子中的内层电子被轰击逸出,外层电子向低能级跃迁时就会激发出特征X射线,不同元素的原子能级差不同而发出的特征X射线就不同,因此,可以将样品发出的特征X射线作为化学成分分析。同时按照检测X射线的信号为特征波长或特征能量又将相应的仪器分别叫波谱分散谱仪(简称波谱仪,WDS)和能量分散谱仪(简称能谱仪,EDS),波谱仪的分辨率比能谱仪高,能谱仪的分析速度比波谱仪快。由于能谱仪的速度快且成本低,所以一般的扫描电镜配置的都是能谱仪。

8. 光电子能谱(XPS)分析

样品受X射线照射时,表面原子的内壳层电子会脱离原子核的束缚而逸出固体表面形成电子,测量其动能Ex,可得到原子的内壳层电子的结合能Eb,Eb因不同元素和不同电子壳层而异,它是原子的“指纹”标识参数,形成的谱线即为光电子能谱(XPS)。XPS在PCB的分析方面主要用于焊盘镀层质量的分析、污染物分析和氧化程度的分析,以确定可焊性不良的深层次原因。

9. 热分析差示扫描量热法(Differential Scanning Calorimetry)

DSC在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,可通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化。而使两边热量平衡,温差ΔT消失,并记录试样和参比物下两只电热补偿的热功率之差随温度(或时间)的变化关系,根据这种变化关系,可研究分析材料的物理化学及热力学性能。 DSC的应用广泛,但在PCB的分析方面主要用于测量PCB上所用的各种高分子材料的固化程度、玻璃态转化温度,这两个参数决定着PCB在后续工艺过程中的可靠性。

10. 热机械分析仪(TMA)

热机械分析技术(Thermal Mechanical Analysis)用于程序控温下,测量固体、液体和凝胶在热或机械力作用下的形变性能,常用的负荷方式有压缩、针入、拉伸、弯曲等。TMA的应用广泛,在PCB的分析方面主要用于PCB最关键的两个参数:测量其线性膨胀系数和玻璃态转化温度。膨胀系数过大的基材的PCB在焊接组装后常常会导致金属化孔的断裂失效。

由于PCB高密度的发展趋势以及无铅与无卤的环保要求,越来越多的PCB出现了润湿不良、爆板、分层、CAF等等各种失效问题。介绍这些分析技术在线路板厂实际案例中的应用。PCB失效机理与原因的获得将有利于将来对PCB的质量控制,从而避免类似问题的再度发生。


常见问题

1. PCB失效分析需要多长时间完成?

PCB失效分析的时间取决于问题的复杂性和所使用的分析技术。一般而言,简单的问题可能只需几小时,而复杂的问题可能需要数天甚至更长时间。

2. 如何选择合适的失效分析技术?

选择合适的失效分析技术需要根据具体情况来决定。首先,需要对问题进行初步定位,然后根据问题的性质选择适当的技术。有时需要组合多种技术来全面分析问题。

3. 失效分析是否能够彻底解决PCB问题?

失效分析可以帮助定位和理解问题的根本原因,但解决问题的过程可能需要进一步的工程改进和优化。失效分析是解决问题的第一步。

4. PCB失效分析是否适用于所有类型的电子设备?

PCB失效分析技术适用于各种类型的电子设备,包括消费电子、工业设备和通信设备等。无论设备规模如何,都可以受益于失效分析以提高可靠性和性能。

5. 失效分析是否可以用于预防性维护?

是的,失效分析可以用于预防性维护。通过定期对PCB进行失效分析,可以及早识别潜在问题并采取措施,以避免设备损坏和停机时间的损失。

滚动至顶部