敬鹏电子

免费 DFM 和 DFA

敬鹏电子提供免费的DFM(设计可制造性)和DFA(设计可装配性)服务,帮助优化设计、降低生产成本并提高产品可靠性。

PCB DFM DFA

什么是 PCB DFM/DFA?

DFM(Design for Manufacturability,设计可制造性)是指在产品设计阶段通过优化设计,确保产品能够以最高的效率和最低的成本进行制造,同时减少制造过程中可能出现的问题。

DFA(Design for Assembly,设计可装配性)则是指通过优化设计,简化产品的装配过程,减少装配时间和成本,提高装配效率及产品的可靠性。两者都旨在通过更科学的设计方法,在产品开发初期降低后续制造和装配的复杂性及成本,从而提升整体生产效率和质量。

为什么我们需要DFM/DFA

降低制造和装配成本

通过优化设计,减少复杂工艺和多余步骤,从源头上降低生产和装配的成本。

提高生产效率

简化制造和装配流程,缩短生产时间,提升整体生产效率。

减少制造和装配中的错误

优化设计可避免潜在的制造或装配问题,从而减少废品率和返工次数。

缩短产品开发周期

通过在设计阶段解决制造和装配问题,避免后期的设计修改,显著加快产品上市速度。

提高产品质量和可靠性

优化后的设计更符合制造和装配工艺要求,能够显著提升产品的质量和可靠性。

减少资源浪费

通过改进设计,减少材料浪费、能源消耗和多余库存,实现更高的资源利用率。

更好地满足客户需求

产品设计更加合理,制造和装配质量更高,可以更好地满足客户对成本、质量和交付时间的要求。

适应技术和市场变化

通过DFM/DFA优化设计,可以更快适应新技术或市场需求的变化,提高产品竞争力。

PCB 可制造性设计

不完整和无效的设计文件

无论是 Gerber 还是 ODB++亦或者是BOM文件,输入文件都包含重要信息,例如层图像、物料清单、电路板轮廓、IPC 网表、主图纸和层顺序。

规范中的任何混淆都可能在后期阶段产生问题。因此,在提交生产之前检查所有强制性文件。下面列举了一个DFM 工具所要求的 Gerber 文件和 BOM 文件的格式。

基材材料不当

一些电路根据其功能需要特殊材料。例如,典型的基板不能很好地处理高频信号。这里就需要制造商讨论材料要求,并在初始阶段选择合适的 PCB 基板材料。

走线宽度不当

铜迹线连接电路中的所有组件。迹线中的任何缺陷都可能导致短路、信号失真和散热。导体(迹线)的载流能力随其宽度的增加而增加。

如果更高的电流流过线路,则散发的热量会更多,从而导致电路板过热。因此,根据你的电路要求优化导体宽度,并确保外层走线宽度保持在 4 mil 以上。

你可以使用在线工具进行优化走线宽度、电流容量和温升。

走线间距不当

确保不要为了使电路布局更紧凑而牺牲导体间距,走线间距太小会导致闪络和串扰。

你应该遵循标准指南并在导体之间提供足够的间隙,与走线宽度一样,你可以使用导体间距和电压计算器计算导体之间的最佳间距。

酸性陷阱

在走线布线过程中,如果任何一条线形成锐角(低于 90°),就会形成酸阱。在蚀刻过程中,残留的酸会被困在弯曲区域,这会导致走线的过度蚀刻。

迹线或者钻孔到边缘的间距不足

你应该在电路布局中保持边缘和走线之间的最佳间距。如果你因为一些原因减少空间,那么在去金属化过程中,外部导体可能会被部分剃掉或者切割。

铜和电路板边缘之间的间距不足会导致铜裸露和边缘出现毛刺。

钻孔过程错误

在印刷电路板中,制造商会为各种目的钻孔,例如过孔、对齐、元件放置等。钻孔是一个不可逆的过程,任何不需要的钻孔都可能让你的设计功亏一篑。

其他需要考虑的因素是尺寸、间距、纵横比、板上的孔数和机器类型(激光/机械)。

影响钻孔的常见错误是孔环和钻孔到铜的距离不足。

环形圈的缺陷

环形环将通孔连接到迹线,如果环形圈的直径不足,它将断开导体和过孔之间的信号流。

完成的钻孔可能有 ±2 密耳的公差,因此当小于 2 密耳时,环形圈可能会出现破裂。这会导致开路。

除此之外,元件孔的环形圈不足会导致组装后焊点不良。

阻焊层错误

PCB 上的阻焊层可保护表面免受污染并隔离连接。制造商在焊接过程中揭露放置元件的区域(足迹和焊盘)。

如果通孔掩模开口与相邻元件开口之间没有适当的间隙,则可能会在组装过程中形成焊桥,这会导致焊点不良且效率低下。

因此,必须在通孔开口和相邻元件开口之间保持所需的阻焊层。

随时为您提供报价服务

为了更好地了解我们的产品和服务,我们期待与您建立联系,解决您的任何需求,共同创造美好的合作机会!

面向装配的 PCB 设计

数据效率低下

与 DFM 类似,你应该在设计进入装配过程之前验证所有基本数据表验证关键参数,如封装尺寸、XY 数据、DNI 规格、SI 数据、零件编号等。这样的话,可以避免之后的更正和确认。

选择错误的组件

零件的选择会影响装配过程。例如,与表面贴装技术 (SMT)相比,通孔元件需要复杂的制造工艺。因此,最好只在需要时使用它们。

始终选择标准组件而不是自定义组件,因为标准元素很容易从多个供应商处获得。由于你只能从选定的供应商处采购定制零件,因此它们通常不适合大批量生产,而且还会增加成本。

组件可用性

在构建物料清单 (BOM) 之前,应该始终确认部件的可用性。如果供应短缺,你应该准备好使用来自不同供应商的替代组件。

物件封装不正确

BOM 指定组装电路板所需的所有组件。如果 BOM 中指定的组件尺寸与CAD封装数据不匹配,则将很难完成电路。这将对自动化装配线造成重大困难。

纠正这种情况将很费时,也会增加成本。因此,请在设计阶段仔细检查组件尺寸。

元件间距不足

在元件放置过程中,间距不足会导致零件重叠、形成焊桥等。在零件之间提供足够的间隙也有利于手动焊接和返工。特别注意 QFP/QFN、POP 或 BGA 等敏感元件的间距。

有时,元素会紧密放置以实现更小的外形尺寸。最好遵循间距指南,以确保零件间距零误差。

组件到边缘的间距不足

完成组装过程后,面板将经过分板过程。在此过程中,电路板末端的部件将不得不承受可能损坏它们的高应力。因此,在组件和边缘之间提供足够的间距。此外,间距选项因不同的装配工艺而异。

与自动组装相比,在手动组装中,你可以将单元放置得更靠近边缘。

焊盘尺寸和间距不正确

选择较小的焊盘尺寸会在 SMT 元件中产生较差的焊点,甚至在应用于通孔部件时可能会断裂。

使焊盘尺寸尽可能大可能不是解决方案。较大宽度的焊盘会占用更多空间,并且会使 SMT 元件在焊接时从其位置移动。

与焊盘尺寸类似,焊盘间距不能太近或太远,因为它们在放置元件时会造成问题。

丝印错误

丝印层包含许多重要信息。一些示例是元件方向标记、引脚 1 标记、极性标记、阴极标记等。

如果这些细节缺失或不清楚,那么装配厂将浪费时间来确认正确的数据。

在最坏的情况下,如果丝网印错了极化等数据,组装人员相应地安装了元件,那么电路板可能会出现故障。你需要在组装开始前确保丝印的可读性良好。

滚动至顶部